Chip-to-Chip and On-Chip Communications

نویسندگان

  • Josef A. Nossek
  • Peter Russer
  • Tobias Noll
  • Amine Mezghani
  • Michel T. Ivrlač
  • Matthias Korb
  • Farooq Mukhtar
  • Hristomir Yordanov
  • Johannes A. Russer
چکیده

In high-performance integrated circuits manufactured in CMOS deep sub-micron technology, the speed of global information exchange on the chip has developed into a bottleneck, that limits the effective information processing speed. This is caused by standard on-chip communication based on multi-conductor interconnects, e.g., implemented as parallel interconnect buses. The supported clock frequency of such wired interconnects at best remains constant under scaling, but for global interconnects reduces by a factor of four, as the structure size is reduced by half. Such multi-conductor interconnects also exhibit some undesirable propertieswhen used for chip-to-chip communication. Themuch larger distances that have to be bridged, force the clock frequencies for the chip-to-chip interconnects to much lower values than those for on-chip circuitry. In widening up this bottleneck by increasing the number of parallel wires, the separation between the wires has to decrease. This causes increased mutual coupling between neighboring wires, which reduces the supported clock frequency and counters the effect of having more wires in the first place.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CAFT: Cost-aware and Fault-tolerant routing algorithm in 2D mesh Network-on-Chip

By increasing, the complexity of chips and the need to integrating more components into a chip has made network –on- chip known as an important infrastructure for network communications on the system, and is a good alternative to traditional ways and using the bus. By increasing the density of chips, the possibility of failure in the chip network increases and providing correction and fault tol...

متن کامل

Reliability and Performance Evaluation of Fault-aware Routing Methods for Network-on-Chip Architectures (RESEARCH NOTE)

Nowadays, faults and failures are increasing especially in complex systems such as Network-on-Chip (NoC) based Systems-on-a-Chip due to the increasing susceptibility and decreasing feature sizes. On the other hand, fault-tolerant routing algorithms have an evident effect on tolerating permanent faults and improving the reliability of a Network-on-Chip based system. This paper presents reliabili...

متن کامل

Design of a Low-Latency Router Based on Virtual Output Queuing and Bypass Channels for Wireless Network-on-Chip

Wireless network-on-chip (WiNoC) is considered as a novel approach for designing future multi-core systems. In WiNoCs, wireless routers (WRs) utilize high-bandwidth wireless links to reduce the transmission delay between the long distance nodes. When the network traffic loads increase, a large number of packets will be sent into the wired and wireless links and can...

متن کامل

Cost-aware Topology Customization of Mesh-based Networks-on-Chip

Nowadays, the growing demand for supporting multiple applications causes to use multiple IPs onto the chip. In fact, finding truly scalable communication architecture will be a critical concern. To this end, the Networks-on-Chip (NoC) paradigm has emerged as a promising solution to on-chip communication challenges within the silicon-based electronics. Many of today’s NoC architectures are based...

متن کامل

Chip Formation Process using Finite Element Simulation “Influence of Cutting Speed Variation”

The main aim of this paper is to study the material removal phenomenon using the finite element method (FEM) analysis for orthogonal cutting, and the impact of cutting speed variation on the chip formation, stress and plastic deformation. We have explored different constitutive models describing the tool-workpiece interaction. The Johnson-Cook constitutive model with damage initiation and damag...

متن کامل

Optimization of Material Removal Rate in Electrical Discharge Machining Alloy on DIN1.2080 with the Neural Network and Genetic Algorithm

Electrical discharge machining process is one of the most Applicable methods in Non-traditional machining for Machining chip in Conduct electricity Piece that reaching to the Pieces that have good quality and high rate of machining chip is very important. Due to the rapid and widespread use of alloy DIN1.2080 in different industry such as Molding, lathe tools, reamer, broaching, cutting guillot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013